Synthesis of Novel Bis-Crown and Double-Armed Crown Ethers Having the 18-Crown-6 Residue

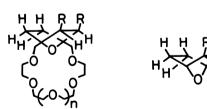
Koichiro Naemura,* Hiroshi Iwasaka, and Hiroaki Снікаматsu Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560 (Received May 8, 1987)

Synopsis. The 18-crown-6 derivative possessing two hydroxyl groups was prepared from the Diels-Alder adduct of 1,7-(1,2-ethanediylidene)-18-crown-6 with dimethyl 2-butynedioate. By using the crown ether as the key intermediate, novel bis-crown and double-armed crown ethers having the 18-crown-6 residue were synthesized, and their abilities to extract metal picrates were investigated.

Since Smid and co-workers first prepared the biscrown ether,¹⁾ a variety of bis-crown ethers have been synthesized and their complexing properties have been investigated, because of interests in their unique binding properties. Here we report the syntheses of novel bis-crown and double-armed crown ethers having the 18-crown-6 residue and the solvent extraction of metal picrates with these crown ethers. Bis-crown ethers are divided into several groups according to a variation of the linkage holding two macrorings²⁾ together and bis-crown ethers described in this paper may be classified into a group which is referred to as a "hinged" bis-crown ether.^{2,3)}

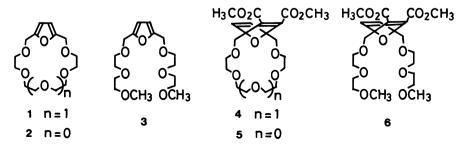
We chose the crown ether 8 possessing two hydroxyl groups as well as the 18-crown-6 residue as the key intermediate for the preparation of bis-crown and double-armed crown ethers having the 18-crown-6 residue. Treatment of 14 with dimethyl 2-butynedioate in refluxing toluene gave the adduct 4 in 71% yield. Catalytic hydrogenation of 4 over 10% Pd/C in methanol afforded the diester 7 in 79% yield. The diester 9 containing the 15-crown-5 residue was obtained from 25 in 52% overall yield via the adduct 5.

Assignment of the configuration of 7 and 9 was based on their ¹H NMR spectra with those of 11 and 12 with known configurations.⁶ Chemical shifts on


Table 1. Chemical Shifts of Endo- and Exo-Protons on the Ethano Bridge

	endo-proton	exo-proton		
7	1.9-2.2	1.4-1.7		
9	1.9-2.2	1.4-1.7		
11	1.9-2.1	1.6-1.8		
12	1.4-1.6	1.7-1.9		

endo- and exo-protons on the ethano bridge in 7, 9, 11, and 12 are summarized in Table 1. The endo-protons in 11 are shifted considerably downfield due to a deshieding effect of the endo-carbonyl groups on C2 and C3, and the endo-protons in 7 and 9 are also shifted to downfield. From the data described above, we assigned the endo-configuration to 7 and 9 as shown in their structural formulas.


Reduction of 7 and 9 with LiAlH₄ in tetrahydrofuran (THF) gave 8 (81%) and 10 (78%), respectively. High dilution condensation of 8 with triethylene glycol, tetraethylene glycol, and pentaethylene glycol ditosylate in dimethyl sulfoxide (DMSO)-1,2-dimethoxyethane (DME) in the presence of NaH gave 15 (22%), 16 (26%), and 17 (45%), respectively. Treatment of 10 with pentaethylene glycol ditosylate in high dilution conditions afforded 18 in 42% yield. The structures of these crown ethers were confirmed on the basis of their ¹H NMR and mass spectra as well as elemental analyses.

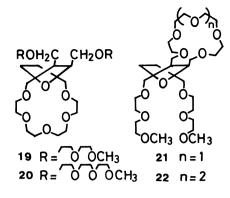
Double-armed crown ethers 19 and 20 containing the 18-crown-6 residue were also prepared from 8. Treatment of 8 with 3,6-dioxaheptyl and 3,6,9-trioxadecyl p-toluenesulfonate in N,N-dimethylformamide (DMF) in the presence of NaH provided 19 (68%) and 20 (20%), respectively. Our attempts to prepare directly 19 from 1 by the Diels-Alder reaction of 1 with 2,5,8,13,16,19-hexaoxa-10-icosyne, prepared by condensation of 2-butyne-1,4-diol with 3,6-dioxaheptyl p-toluenesulfonate and KOBu^t in THF,

10 n=0 R=CH2OH

7 n=1 R=CO₂CH₃ 11 R¹=CO₂CH₃ R²=H 8 n=1 R=CH₂OH 12 R¹=H R²=CO₂CH₃ 9 n=0 R=CO₂CH₃

were unsuccessful, because the reaction did not give any Diels-Alder adduct.

We next turned our attention to the preparation of the other type of polyether that is O_7 -monopodand bound to a crown ether framework by two single bonds. A similar set of reactions described for **8** transformed the monopodand **3** into the key intermediate **14** (25% overall yield) via **6** and **13**. The structure of **13** was confirmed by its ¹H NMR spectrum exhibiting signals of the endo-protons at C5 and C6 at δ 2.0—2.2 and the exo-protons at δ 1.5—1.7. High dilution condensation of **14** with tetraethylene glycol and pentaethylene glycol ditosylate gave **21** (47%) and **22** (37%), respectively.


The cation-binding ability of these crown ethers was estimated by solvent extraction of aqueous solution of metal picrate with a chloroform solution containing crown ether, and the results are given in Table 2.

Among crown ethers described here, the bis-crown ether **16** containing the 18-crown-6 and the 17-crown-5 residue possesses the highest extractability towards all cations examined in this study, and both double-armed crown ethers **19** and **20** also exhibit higher extractabilities towards all cations than the parent 18-crown-6. However, in the case of the bis-crown ethers **15** and **17**, both of which contain also the 18-crown-6 residue, the additional crown ether framework contributes hardly to raise the extractability of the bis-crown ether.

Table 2. Extraction of Metal Picratesa)

Host	Extractability/%					
	Li+	Na+	K+	Rb+	Cs+	Ag+
15	3.0	9.5	66.5	56.0	34.8	43.0
16	4.3	21.2	76.5	68.3	41.4	56.6
17	1.2	13.3	66.3	57.8	35.0	44.0
18	1.0	5.3	9.2	9.1	8.3	28.9
19	3.0	16.2	77.1	68.3	40.5	51.4
20	5.8	14.0	71.0	57.2	37.8	50.5
21	2.2	1.1	1.5	0	0	7.0
22	0	3.0	3.8	7.3	1.5	3.2
18-Crown-6	3.1	6.0	66.3	55.2	34.7	29.2

a) The solvent extraction was carried out according to the procedure reported in our preceding paper.⁸⁾

Experimental

2,5-Bis(2,5,8-trioxanonyl)furan (3). To a suspension of potassium t-butoxide (11.2 g, 0.100 mol) in dry THF (300 mL) was added 2,5-bis(hydroxymethyl)furan (3.84 g, 0.0300 mol) and then a solution of 3,6-dioxaheptyl p-toluenesulfonate (27.4 g, 0.100 mol) in dry THF (100 mL) was added to the reaction mixture. After the mixture was refluxed for 12 h, a solid was filtered off and the filtrate was condensed in vacuo. The residue was chromatographed on alumina (benzene eluent) to give 3 (4.06 g, 41% yield): bp 160-162 °C (0.02 mmHg (1 mmHg=133.322 Pa)). Found: C, 57.50; H, 8.41%. Calcd for $C_{16}H_{28}O_7$: C, 57.81; H, 8.49%.

18,19-Bis(methoxycarbonyl)-3,6,9,12,15,22-hexaoxatricyclo-[15.2.2.1^{1,17}]docosa-18,20-diene (4). A solution of 1⁴ (1.00 g, 3.50 mmol) and dimethyl 2-butynedioate (5.82 g, 41.0 mmol) in toluene (20 mL) was refluxed for 15 h. After evaporation of volatile materials, the residue was chromatographed on alumina (CHCl₃) to give 4 (1.06 g, 71%): mp 84—86 °C (lit,4) mp 55—60 °C); ¹H NMR (CDCl₃) δ =3.5—3.9 (16H, m), 3.75 (6H, s), 4.15 (2H, d J=12 Hz), 4.31 (2H, d J=12 Hz), 6.99 (2H, s). Found: C, 55.88; H, 6.50%. Calcd for C₂₀H₂₈O₁₀: C, 56.07; H, 6.59%.

15,16-Bis(methoxycarbonyl)-3,6,9,12,19-pentaoxatricyclo-[**12.2.2.1**^{1,14}]**nonadeca-15,17-diene (5).** The diester **5** (1.31 g, 69%) was prepared from **2**⁵ (1.20 g, 4.95 mmol) and dimethyl 2-butynedioate (7.10 g, 50.0 mmol) as an oil: ¹H NMR (CDCl₃) δ=3.5—3.9 (12H, m), 3.82 (6H, s), 4.08 (2H, d J=12 Hz), 4.42 (2H, d J=12 Hz), 7.03 (2H, s). Found: C, 55.92; H, 5.97%. Calcd for C₁₈H₂₄O₉: C, 56.24; H, 6.29%.

2,3-Bis(methoxycarbonyl)-1,4-bis(2,5,8-trioxanonyl)-7-oxabicyclo[2.2.1]hepta-2,5-diene (6). The diester **6** (1.68 g, 41%) was prepared from **3** (2.86 g, 8.61 mmol) and dimethyl 2-butynedioate (12.2 g, 86.1 mmol) as an oil: 1 H NMR (CDCl₃) δ =3.35 (6H, s), 3.5—3.7 (16H, m), 3.75 (6H, s), 4.20 (4H, s), 7.03 (2H, s). Found: C, 55.05; H, 7.30%. Calcd for $C_{22}H_{34}O_{11}$: C, 55.68; H, 7.22%.

cis-18,19-Bis(methoxycarbonyl)-3,6,9,12,15,22-hexaoxatricyclo[15.2.2.1^{1,17}]docosane (7). A mixture of 4 (2.85 g, 6.65 mmol) and methanol (70 mL) was shaken at room temperature with 10% Pd/C (390 mg) at 1 atm of hydrogen. After a usual workup, chromatography (Al₂O₃, benzene-CHCl₃ 1:1) gave 7 (2.27 g, 79%): mp 62—63 °C (hexane-benzene) ¹H NMR (CDCl₃) δ=1.4—1.7 (2H, m), 1.9—2.2 (2H, m), 3.5—3.7 (22H, m), 3.62 (6H, s). Found: C, 55.08; H, 7.44%. Calcd for $C_{20}H_{32}O_{10}$: C, 55.54; H, 7.46%.

cis-15,16-Bis(methoxycarbonyl)-3,6,9,12,19-pentaoxatricyclo[12.2.2.1^{1,14}]nonadecane (9). The diester 9 (992 mg, 75%) was obtained from 5 (1.31 g, 3.41 mmol): mp 58—60 °C (hexane-benzene); ¹H NMR (CDCl₃) δ =1.4—1.7 (2H, m), 1.9—2.2 (2H, m), 3.66 (6H, s), 3.6—3.9 (18H, m). Found: C,

55.42; H, 7.24%; Calcd for C₁₈H₂₈O₉: C, 55.66; H, 7.27%.

cis-2,3-Bis(methoxycarbonyl)-1,4-bis(2,5,8-trioxanonyl)-7-oxabicyclo[2.2.1]heptane (13). The diester 13 (1.20 g, 71%) was obtained from 6 (1.68 g, 3.54 mmol) as an oil after chromatography (Al₂O₃, benzene): 1 H NMR (CDCl₃) δ = 1.5—1.7 (2H, m), 2.0—2.2 (2H, m), 3.36 (6H, s), 3.37 (2H, s), 3.64 (6H, s), 3.5—3.8 (20H, m). Found: C, 55.03; H, 7.94%; Calcd for C₂₂H₃₈O₁₁: C, 55.24; H, 8.01%.

cis-18,19-Bis(hydroxymethyl)-3,6,9,12,15,22-hexaoxatricy-clo[15.2.2.1^{1,17}]docosane (8). A solution of **7** (800 mg, 1.85 mmol) in dry THF (40 mL) was added to a suspension of LiAlH₄ (220 mg, 5.80 mmol) in dry THF (40 mL) and the mixture was refluxed for 12 h. After a usual workup, chromatography on alumina (CHCl₃-methanol 20:1) gave **8** (563 mg, 81%) as a hygroscopic oil: ¹H NMR (CDCl₃) δ =1.54 (4H, s), 2.60 (2H, br s), 3.67 (2H, s), 3.5—3.9 (24H, m); MS m/z 376 (M⁺).

cis-15,16-Bis(hydroxymethyl)-3,6,9,12,19-pentaoxatricyclo-[12.2.2.1¹.¹⁴]nonadecane (10). The diol 10 (300 mg, 78%) was obtained from 9 (450 mg, 1.16 mmol) as a hygroscopic oil after chromatography on alumina (CHCl₃-methanol 100:1): ¹H NMR (CDCl₃) δ =1.51 (4H, s), 2.64 (2H, br s), 3.5—3.9 (20H, m), 3.88 (2H, s); MS m/z 332 (M+).

cis-2,3-Bis(hydroxymethyl)-1,4-bis(2,5,8-trioxanonyl)-7-oxabicyclo[2.2.1]heptane (14). The diol 14 (585 mg, 60%) was obtained from 13 (1.10 g, 2.30 mmol) as an oil after chromatography (Al₂O₃, CHCl₃): 1 H NMR (CDCl₃) δ =1.6—1.8 (4H, m), 2.58 (2H, br s), 3.37 (6H, s), 3.49 (2H, s), 3.5—3.8 (24H, m). Found: C, 56.38; H, 9.30%. Calcd for C₂₀H₃₈O₉: C, 56.85; H, 9.07%.

2,5,8,11,14,19,22,25,28,33-Decaoxatetracyclo[15.14.2.1^{1,16},0^{17,30}]-tritriacontane (15). To a suspension of NaH (96 mg, 4.0 mmol) in 30 mL of DMSO-DME (1:3) was added **8** (486 mg, 1.30 mmol) and then the mixture was heated at 50 °C for 1 h. A solution of triethylene glycol ditosylate (595 mg, 1.30 mmol) in 60 mL of DMSO-DME (1:3) was added to the mixture at 50 ± 5 °C over a 10 h period and the reaction mixture was heated at this temperature for an additional 30 h. After a small amount of water was added to the chilled reaction mixture, the solvent was evaporated in vacuo. The residue was extracted with CHCl₃. After a usual workup, chromatography on alumina (CHCl₃) gave **15** (140 mg, 22%) as an oil: ¹H NMR (CDCl₃) δ =1.68 (4H, br s), 2.50 (2H, br s), 3.4—3.8 (36H, m); MS m/z 490 (M+). Found: C, 58.25; H, 8.49%. Calcd for C₂₄H₄₂O₁₀: C, 58.75; H, 8.63%.

4,7,10,13,16,21,24,27,30,33,37-Undecaoxatetracyclo-[17.15.2.1^{1,19}.0^{2,18}]heptatriacontane (16). Compound 16 (144 mg, 26%) was prepared from **8** (400 mg, 1.06 mmol) and tetraethylene glycol ditosylate (530 mg, 1.06 mmol) as an oil after chromatography (Al₂O₃, CHCl₃-methanol 50:1): ¹H NMR (CDCl₃) δ =1.73 (4H, br s), 2.23 (2H, br s), 3.3—3.9 (40H, m); MS m/z 534 (M⁺). Found: C, 58.02; H, 8.60%. Calcd for C₂₆H₄₆O₁₁: C, 58.41; H, 8.67%.

4,7,10,13,16,19,24,27,30,33,36,40-Dodecaoxatetracyclo[20.15. 2.1^{1,22}**.0**^{2,21}**]tetracontane** (17). Compound **17** (230 mg, 45%) was obtained from **8** (330 mg, 0.877 mmol) and pentaethylene glycol ditosylate (480 mg, 0.877 mmol) as an oil: 1 H NMR (CDCl₃) δ =1.67 (4H, br s), 2.44 (2H, br s), 3.3—3.9 (44H, m); MS m/z 578 (M⁺). Found: C, 57.58; H, 8.65%. Calcd for C₂₈H₅₀O₁₂: C, 58.11; H, 8.71%.

4,7,10,13,16,19,24,27,30,33,37-Undecaoxatetracyclo[20.12. 2.1^{1,22}**.0**^{2,21}]heptatriacontane (18). Compound **18** (204 mg,

42%) was obtained from **10** (300 mg, 0.903 mmol) and pentaethylene glycol ditosylate (500 mg, 0.914 mmol) as an oil: 1 H NMR (CDCl₃) δ 1.72 (4H, br s), 2.50 (2H, br s), 3.4—3.8 (40H, m); MS m/z 534 (M⁺). Found: C, 57.72; H, 8.79%. Calcd for C₂₆H₄₆O₁₁: C, 58.41; H, 8.67%.

18,19-Bis(2,5,8-trioxanonyl)-3,6,9,12,15,22-hexaoxatricy-clo[15.2.2.1^{1,17}]docosane (19). To a suspension of NaH (40 mg, 1.7 mmol) in dry DMF (10 mL) was added a solution of **8** (200 mg, 0.532 mmol) in dry DMF (10 mL). After the mixture was heated at 50 ± 5 °C for 1 h, a solution of 3,6-dioxaheptyl *p*-toluenesulfonate (320 mg, 1.17 mmol) in DMF (10 mL) was added to the mixture and then it was heated at 50 ± 5 °C for an additional 30 h. After a similar workup described for the preparation of **15**, chromatography (Al₂O₃, benzene-CHCl₃) provided **19** (210 mg, 68%) as an oil: ¹H NMR (CDCl₃) δ =1.70 (4H, br s), 2.48 (2H, br s), 3.36 (6H, s), 3.4-3.8 (40H, m); MS m/z 580 (M+). Found: C, 57.47; H, 9.09%. Calcd for C₂₈H₅₂O₁₂: C, 57.91 H, 9.03%.

18,19-Bis(2,5,8,11-tetraoxadodecyl)-3,6,9,12,15,22-hexaoxatricyclo[15.2.2.1^{1,17}]docosane (20). Compound 20 (135 mg, 20%) was obtained from 8 (376 mg, 1.00 mmol) and 3,6,9-trioxadecyl p-toluenesulfonate (795 mg, 2.50 mmol) as an oil: 1 H NMR (CDCl₃) δ =1.68 (4H, br s), 2.45 (2H, br s), 3.32 (6H, s), 3.4—3.8 (48H, m); MS m/z 668 (M⁺). Found: C, 56.72; H, 9.08%. Calcd for $C_{32}H_{60}O_{14}$: C, 57.46; H, 9.04%.

1,19-Bis(2,5,8-trioxanonyl)-4,7,10,13,16,22-hexaoxatricyclo-[17.2.1.0^{2,18}]docosane (21). Compound 21 (160 mg, 47%) was prepared from 14 (250 mg, 0.592 mmol) and tetraethylene glycol ditosylate (300 mg, 0.597 mmol) as an oil: 1 H NMR (CDCl₃) δ =1.70 (4H, br s), 2.50 (2H, br s), 3.38 (6H, s), 3.5—3.9 (40H, m); MS m/z 580 (M⁺). Found: C, 57.06; H, 9.10%. Calcd for C₂₈H₅₂O₁₂: C, 57.91; H, 9.03%.

1,22-Bis(2,5,8-trioxanonyl)-4,7,10,13,16,19,25-heptaoxatricy-clo[20.2.1.0^{2,22}**]pentacosane** (22). Compound **22** (164 mg, 37%) was obtained from **14** (300 mg, 0.710 mmol) and pentaethylene glycol ditosylate (390 mg, 0.710 mmol) as an oil: 1 H NMR (CDCl₃) δ =1.69 (4H, br s), 2.50 (2H, br s), 3.37 (6H, s), 3.5—3.9 (44H, m); MS m/z 624 (M⁺). Found: C, 57.08; H, 8.97%. Calcd for C₃₀H₅₆O₁₃: C, 57.67; H, 9.04%.

References

- 1) K. H. Wong, M. Bourgoin, and J. Smid, *J. Chem. Soc., Chem. Commun.*, **1974**, 715.
- 2) G. W. Gokel and S. H. Korezeniowski, "Macrocyclic Polyether Syntheses," Springer-Verlag, Berlin, Heidelberg, and New York (1982), p. 34.
- 3) R. C. Helgeson, T. L. Tarnowski, and D. J. Cram, J. Org. Chem., 44, 2538 (1979); R. C. Helgeson, G. R. Weisman, J. L. Toner, T. L. Tarnowski, Y. Chao, J. M. Mayer, and D. J. Cram, J. Am. Chem. Soc., 101, 4928 (1979).
- 4) J. M. Timko and D. J. Cram, J. Am. Chem. Soc., **96**, 7159 (1974); J. M. Timko, S. S. More, D. M. Walba, P. C. Hiberty, and D. J. Cram, *ibid.*, **99**, 4207 (1977).
- 5) D. N. Reinhoudt and R. T. Gray, Tetrahedron Lett., 1975, 2105.
- 6) T. A. Eggelete, H. de Koning, and H. O. Huisman, *Tetrahedron*, 29, 2491 (1973).
- 7) E. Weber and F. Vögtle, *Inorg. Chim. Acta*, **45**, L65 (1980)
- 8) K. Naemura, I. Ebashi, and M. Nakazaki, *Bull. Chem. Soc. Jpn.*, **58**, 767 (1985).